Reinforcement learning for demand response: A review of algorithms and modeling techniques
José R. Vázquez-Canteli and
Zoltán Nagy
Applied Energy, 2019, vol. 235, issue C, 1072-1089
Abstract:
Buildings account for about 40% of the global energy consumption. Renewable energy resources are one possibility to mitigate the dependence of residential buildings on the electrical grid. However, their integration into the existing grid infrastructure must be done carefully to avoid instability, and guarantee availability and security of supply. Demand response, or demand-side management, improves grid stability by increasing demand flexibility, and shifts peak demand towards periods of peak renewable energy generation by providing consumers with economic incentives. This paper reviews the use of reinforcement learning, a machine learning algorithm, for demand response applications in the smart grid. Reinforcement learning has been utilized to control diverse energy systems such as electric vehicles, heating ventilation and air conditioning (HVAC) systems, smart appliances, or batteries. The future of demand response greatly depends on its ability to prevent consumer discomfort and integrate human feedback into the control loop. Reinforcement learning is a potentially model-free algorithm that can adapt to its environment, as well as to human preferences by directly integrating user feedback into its control logic. Our review shows that, although many papers consider human comfort and satisfaction, most of them focus on single-agent systems with demand-independent electricity prices and a stationary environment. However, when electricity prices are modelled as demand-dependent variables, there is a risk of shifting the peak demand rather than shaving it. We identify a need to further explore reinforcement learning to coordinate multi-agent systems that can participate in demand response programs under demand-dependent electricity prices. Finally, we discuss directions for future research, e.g., quantifying how RL could adapt to changing urban conditions such as building refurbishment and urban or population growth.
Keywords: Machine learning; Deep learning; HVAC control; Building energy; Electric vehicles; Smart grid (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (137)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918317082
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:235:y:2019:i:c:p:1072-1089
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.11.002
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().