EconPapers    
Economics at your fingertips  
 

Comparative environmental profile assessments of commercial and novel material structures for solid oxide fuel cells

Lucy Smith, Taofeeq Ibn-Mohammed, Fan Yang, Ian M. Reaney, Derek C. Sinclair and S.C. Lenny Koh

Applied Energy, 2019, vol. 235, issue C, 1300-1313

Abstract: Globally, the issue of climate change due to greenhouse gas (GHG) emissions is now broadly acknowledged as one of the major challenges facing humankind that requires urgent attention. Accordingly, considerable efforts on clean energy technologies and policy recommendations have been developed to address this challenge. Solid oxide fuel cells (SOFCs) have been touted to play a role in achieving a reduction in global GHG emissions, offering numerous advantages including higher efficiencies and reduced emissions, over other conventional methods of energy generation. The increasing recognition and emphasis on fuel cells as a representative power generation system of the future has raised concerns over their environmental profile. Extensive research regarding the environmental profile of current structures of SOFCs can be found in the literature, but none consider the use of new materials to achieve lower environmental impacts. This research fills the gap and presents a comparison of the environmental profile of three SOFC structures: a commercially available structure, and two intermediate temperature structures, one using erbia-stabilised bismuth oxide electrolytes and a proposed structure using strontium-doped sodium bismuth titanate electrolytes. Using a functional unit of kg/100 kW of power output for each of the SOFC structures (excluding the interconnects), within a hybrid life cycle analysis framework, the environmental hotspots across the supply chains of each SOFC type are identified, quantified and ranked. The results show the use of these novel material combinations leads to a reduction in embodied materials and toxicological impact but higher electrical energy consumption during fabrication, in comparison to commercial SOFCs. The findings support the move to reduce the operating temperatures of SOFCs using these novel material architectures, which leads to an overall reduction in environmental impact due to the lower operational energy requirement of the chosen material constituents.

Keywords: Climate change; Life cycle assessment; Solid oxide fuel cells; Materials efficiency; Functional materials; Energy (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918317306
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:235:y:2019:i:c:p:1300-1313

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.11.028

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:235:y:2019:i:c:p:1300-1313