EconPapers    
Economics at your fingertips  
 

Analysis of energy efficiency of forest chip supply systems using discrete-event simulation

Robert Prinz, Kari Väätäinen, Juha Laitila, Lauri Sikanen and Antti Asikainen

Applied Energy, 2019, vol. 235, issue C, 1369-1380

Abstract: Legislative changes have increased the allowable dimensions and weight for heavy transport vehicles in Finland, and this has been essential for the efficiency of wood chip transportation. In a typical forest, the supply of chips from roadside landings to the end-using facilities, such as combined heat and power plants, the balance of production capacities between chippers and the transportation of the chips by truck-trailer combinations substantially influence the performance of the system. The aim of this study was to investigate how new innovative chipper and vehicle types with increased chip carrying capacity would affect the cost and energy efficiency of the entire supply system. A method involving discrete-event simulation was used to investigate efficient solutions for the forest chip supply chain. By running several case scenarios, the aim was to examine the supply costs and efficiencies of new supply systems, and to investigate the difference at supply level between logging residues and small-diameter trees as raw materials.

Keywords: Forest chips; Fuel supply; Energy efficiency; Supply costs; Discrete-event simulation; Logistics (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918317598
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:235:y:2019:i:c:p:1369-1380

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.11.053

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:235:y:2019:i:c:p:1369-1380