Influence of the storage period between charge and discharge in a latent heat thermal energy storage system working under partial load operating conditions
Jaume Gasia,
Alvaro de Gracia,
Gabriel Zsembinszki and
Luisa F. Cabeza
Applied Energy, 2019, vol. 235, issue C, 1389-1399
Abstract:
The supply intermittency of energy sources like solar energy or industrial waste heat should be properly addressed when studying latent heat thermal energy storage (TES) systems, since it might cause an incomplete melting/solidification of phase change materials (PCM). In the present paper, and experimental study was performed to analyse the storage period (also known as stand-by period) in a latent heat TES system working under partial load operating conditions and the effect of its duration on the subsequent discharging process. In the experimental set-up, 99.5 kg of high density polyethylene (HDPE) was used as PCM in a 0.154 m3 storage tank based on the shell-and-tube heat exchanger concept. Four different percentages of charge were evaluated: 58%, 73%, 83% (partial charge), and 97% (full charge). Each charging level was followed by three different periods of storage: 25 min, 60 min, and 120 min. The fact of working at different levels of charge caused that in some regions of the TES system the PCM was not completely melted. Thus, at the end of the charging process different levels of thermal homogenisation were observed. However, during the storage period, the PCM temperature showed a tendency to homogenisation, which was influenced by the energy distribution within the PCM, the heat losses, and the duration of the storage period. Focusing on the discharging period, it was observed that the duration of the storage period slightly affected the temperature and heat transfer profiles, causing the main differences of performance during the first 30 min of process.
Keywords: Thermal energy storage; Phase change material; Partial loads; Incomplete melting; Storage period; Stand-by period (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918317495
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:235:y:2019:i:c:p:1389-1399
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.11.041
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().