A crucial factor affecting the power conversion efficiency of oxide/metal/oxide-based organic photovoltaics: Optical cavity versus transmittance
Byeong Ryong Lee,
Gi Eun Park,
Yong Woon Kim,
Dong Hoon Choi and
Tae Geun Kim
Applied Energy, 2019, vol. 235, issue C, 1505-1513
Abstract:
Considerable effort has been directed at improving the power conversion efficiency of organic photovoltaics, using oxide/metal/oxide multilayers as transparent electrodes, because of their numerous advantages including lower sheet resistance, higher transmittance, and higher flexibility in comparison to typical indium tin oxides. However, to date, most organic photovoltaics based on oxide/metal/oxide electrodes exhibit a lower conversion efficiency than indium tin oxide-based organic photovoltaics, without any clarification. In this investigation, we identify crucial factors that influence the power conversion efficiency of oxide/metal/oxide-based organic photovoltaics to fully exploit the potential of these devices, based on the correlation between the optical cavity and the transmittance. For this purpose, we fabricate five sets ofinverted organic photovoltaics using poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) and [6,6]-Phenyl C71 butyric acid methyl ester-based active layers and ZnO/Ag/ZnO electrodes with top ZnO layers of varying thicknesses, with reference organic photovoltaics using indium tin oxides, on both rigid and flexible substrates. The highest power conversion efficiency of 8.71% and 7.53% is obtained from single-junction organic photovoltaics with 40/9/8-nm-thick ZnO/Ag/ZnO electrodes on each substrate, due to strong micro-cavity effects between the top and bottom Ag layers, despite the relatively low transmittance of the electrode. This result is supported by the relation between the electric-field intensity and the transmittance curves of the ZnO/Ag/ZnO/solution-based ZnO/active bulk optical stacks based on simulation results. Furthermore, flexible organic photovoltaics with the ZnO/Ag/ZnO electrodes demonstrate much better performance in mechanical bending tests in comparison to the performance of standard indium tin oxide-based organic photovoltaics, and the previously reported oxide/metal/oxide-based organic photovoltaics.
Keywords: Wearable photovoltaic device; Energy harvesting; ZnO/Ag/ZnO electrode; Micro-cavity effect; Building integrated photovoltaics (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918317732
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:235:y:2019:i:c:p:1505-1513
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.11.067
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().