A novel methodology to explain and evaluate data-driven building energy performance models based on interpretable machine learning
Cheng Fan,
Fu Xiao,
Chengchu Yan,
Chengliang Liu,
Zhengdao Li and
Jiayuan Wang
Applied Energy, 2019, vol. 235, issue C, 1560 pages
Abstract:
The development of advanced data-driven approaches for building energy management is becoming increasingly essential in the era of big data. Machine learning techniques have gained great popularity in predictive modeling due to their excellence in capturing nonlinear and complicated relationships. However, it is a big challenge for building professionals to fully understand the inference mechanism learnt and put trust into the prediction made, as the models developed are typically of high complexity and low interpretability. To enhance the practical value of advanced machine learning techniques in the building field, this study proposes a comprehensive methodology to explain and evaluate data-driven building energy performance models. The methodology is developed based on the framework of interpretable machine learning. It can help building professionals to understand the inference mechanism learnt, e.g., why a certain prediction is made and what are the supporting and conflicting evidences towards the prediction. A novel metric, i.e., trust, is proposed as an alternative approach other than conventional accuracy metrics to evaluate model performance. The methodology has been validated based on actual building operational data. The results obtained are valuable for the development of intelligent and user-friendly building management systems.
Keywords: Building energy management; Interpretable machine learning; Data-driven models; Building operational performance; Big data analytics (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918317975
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:235:y:2019:i:c:p:1551-1560
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.11.081
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().