A generalized computational model for the simulation of adsorption packed bed reactors – Parametric study of five reactor geometries for cooling applications
Giorgos Papakokkinos,
Jesús Castro,
Joan López and
Assensi Oliva
Applied Energy, 2019, vol. 235, issue C, 409-427
Abstract:
Environmental concerns regarding global warming and ozone depletion urge towards sustainable solutions for satisfying the increasing cooling demand. Adsorption cooling technology could form part of the solution since it can be driven by solar energy and industrial or vehicular waste heat, as well as it employs non ozone-destructive refrigerants. However, its low performance hinders its extensive development and commercialization. The design of the adsorption reactor is crucial for its performance improvement, since its inherent cyclic operation imposes a compromise between the Specific Cooling Power and the Coefficient of Performance. A generalized three-dimensional computational model based on unstructured meshes is presented, capable to simulate all potential geometries. Dynamic conjugate simulations of the packed bed and the heat exchanger allow to study the latter’s influence on the reactor performance. A parametric study of five reactor geometries was conducted, demonstrating quantitatively the strong impact of the solid volume fraction, fin length and fin thickness on the performance. Within the studied range, the Specific Cooling Power is maximized for the highest solid volume fraction and for the lowest fin thickness and fin length. The effect of the adsorbed mass spatial distribution on the desorption phase is discussed. A sensitivity analysis exhibits the importance of the heat transfer coefficient between the two domains. Copper and aluminium are compared as heat exchanger materials, revealing that the former performs more effectively, although the difference is appreciable only for longer fin lengths. The presented numerical model can be employed for improving the design of adsorption packed bed reactors.
Keywords: Adsorption cooling; Adsorption packed bed reactor; Numerical simulation; Geometric analysis; Silica-gel/water (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918316490
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:235:y:2019:i:c:p:409-427
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.10.081
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().