Oxidative torrefaction of biomass nutshells: Evaluations of energy efficiency as well as biochar transportation and storage
Congyu Zhang,
Shih-Hsin Ho,
Wei-Hsin Chen,
Yujie Fu,
Jo-Shu Chang and
Xiaotao Bi
Applied Energy, 2019, vol. 235, issue C, 428-441
Abstract:
Oxidative torrefaction of three biomass nutshells (walnut shell, xanthoceras sorbifolia shell, and sapindus mukorossi shell) were analyzed in the present study where the influences of torrefaction temperature (250 and 300 °C), torrefaction duration (10–30 min), and oxygen concentration (0–21%) on torrefaction performance were taken into consideration. The results suggested that the oxidatively torrefied nutshells also exhibited strongly linear distribution in the van Krevelen diagram, and the carbon enrichment was a feasible index to describe weight loss (torrefaction severity) and the enhancement factor of biochar calorific value. To evaluate the industrial potential of oxidative torrefaction for biochar production, the energy efficiency and energy-mass co-benefit index were also examined. The analysis indicated that torrefaction with a higher oxygen concentration accompanied by a shorter duration rendered a higher energy efficiency, and vice versa. However, from biochar delivery and storage points of view, an opposite trend was observed, especially at the torrefaction temperature of 250 °C, but the influence of oxygen concentration was relatively small. Overall, it appeared that the biomass oxidatively torrefied for 20 min along with using air as the carrier gas could reach the balance of energy efficiency and fuel delivery.
Keywords: Oxidative torrefaction; Biochar; Carbon enrichment (CE); Upgrading energy index (UEI); Energy utilization and energy efficiency; Energy-mass co-benefit index (EMCI) (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918316519
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:235:y:2019:i:c:p:428-441
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.10.090
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().