Experimental characterizing combustion emissions and thermodynamic properties of a thermoacoustic swirl combustor
Zhiguo Zhang,
Dan Zhao,
Siliang Ni,
Yuze Sun,
Bing Wang,
Yong Chen,
Guoneng Li and
S. Li
Applied Energy, 2019, vol. 235, issue C, 463-472
Abstract:
Many practical lean-premixed combustion systems involved in land-based power plants, gas turbines and boilers are susceptible to self-excited combustion instability, which is characterized by detrimental periodic pressure oscillations. Little attention has been paid on experimentally characterizing the chemical emissions and thermodynamic properties of a thermoacoustic swirl combustor. In this work, the effects of (1) fuel-air equivalence ratio Φ and fuel flow rate QCH4 on generating such combustion instability and its impact on chemical emissions and thermodynamic properties in a swirling combustor are experimentally studied. For this, a methane-fueled lab-scale swirl combustor is designed and tested. To monitor the thermodynamic properties of the combustor, an acoustic pressure sensor, an infrared thermal imaging camera, K-type thermal couples, and an infrared flue gas analyzer are applied. It is found that the fuel-air ratio plays an important role on generating combustion instability at different frequencies and amplitudes. This is confirmed by conducting autocorrelation and frequency spectrum analyses of the acoustic pressure time trace. Furthermore, the dominant mode swap (mode-switching) between a low frequency ω1 and a high non-harmonic one is experimentally observed. Whether the mode switching from high (harmonic or non-harmonic) to low frequency or low to high frequency is found to depend strongly on QCH4. As the equivalence ratio is changed from lean to rich, i.e. 0.8 ≤ Φ ≤ 1.2, NOx emission is increased from 1 ppm to 37 ppm. However, CO emission is decreased by 2 order of magnitudes from 1000 ppm first and then increased. The minimum CO emission is approximately 3.0 ppm. In addition, O2 concentration is decreased by more than 80% with increased Φ, depending on the methane flow rate. This means that the combustion efficiency characterized by the O2 emission is decreased dramatically from 99.5% to 68% with Φ increased from 0.6 to 1.2. The present work sheds light on the characteristics of chemical emissions and thermodynamic properties, when a thermoacoustic swirl combustor is operated with methane-air equivalence ratio Φ varied from lean to rich condition and different QCH4. It opens up a practical means to design a stably operated but low-emission thermoacoustic swirl combustor.
Keywords: Thermoacoustics; Combustion instability; Equivalence ratio; Swirl combustor; Chemical emission; NOx (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918316994
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:235:y:2019:i:c:p:463-472
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.10.130
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().