EconPapers    
Economics at your fingertips  
 

Novel key parameter for eutectic nitrates based nanofluids selection for concentrating solar power (CSP) systems

Zhu Jiang, Anabel Palacios, Xianzhang Lei, M.E. Navarro, Geng Qiao, Ernesto Mura, Guizhi Xu and Yulong Ding

Applied Energy, 2019, vol. 235, issue C, 529-542

Abstract: A high-performance heat transfer fluid (HTF) plays a crucial role in the overall performance and efficiency of concentrating solar power (CSP) systems for utilizing solar energy. Molten salt-based nanofluids, which may offer a promising solution to help reduce the size and cost of CSP systems, have attracted increasing attention. However, there is still no comprehensive assessment strategy that considers the conflictive effects of adding nanoparticles in HTFs, such as the compromise between energy storage capacity increase and pumping cost increase. In this work, a methodology for nanofluids screening and selection is proposed and a novel parameter (R) is determined to assess the conflictive effect. The parameter (R) considers the ratio between the relative pumping power and the relative energy stored of the nanofluid compared to its base fluid. Three promising eutectics nitrate based nanofluids (NaNO3–KNO3, LiNO3–NaNO3–KNO3, LiNO3–NaNO3–KNO3–Ca(NO3)2) doped with 0.5 wt.% and 1 wt.% silica nanoparticles were selected and evaluated by the proposed methodology. As a result, adding nanoparticles into binary salts always present a negative effect (R = 1.03–1.22) when considering the ratio between the relative pumping cost and the relative energy stored. For ternary salt, adding 1 wt.% silica nanoparticles would be more preferable with a decrease of the parameter (R = 0.89–0.97, R < 1). In terms of quaternary, adding nanoparticles into quaternary does not change the parameter significantly (R = 0.96–1.04).

Keywords: Heat transfer fluids; High temperature; Molten salt; Nanofluids; Specific heat; Rheological behaviour (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918316866
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:235:y:2019:i:c:p:529-542

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.10.114

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:235:y:2019:i:c:p:529-542