EconPapers    
Economics at your fingertips  
 

Intermediate temperature solid oxide fuel cell under internal reforming: Critical operating conditions, associated problems and their impact on the performance

Dulce María Silva-Mosqueda, Francisco Elizalde-Blancas, Davide Pumiglia, Francesca Santoni, Carlos Boigues-Muñoz and Stephen J. McPhail

Applied Energy, 2019, vol. 235, issue C, 625-640

Abstract: To simulate realistic operating conditions and analyze their effect on the performance of planar intermediate temperature solid oxide fuel cell systems, a large-area (11 × 11 cm2) anode-supported single cell was tested for ∼500 h, at 650 °C and 245 mA/cm2, corresponding to 43% of fuel utilization, running on a simulated pre-reformate natural gas composition. To correlate the evolution in the cell performance (i.e. voltage loss; total resistance) with specific thermo-fluid-physicochemical processes, localized gas analyses and temperature measurements through the anode surface, using a very particular spot-sampling set-up, as well as electrochemical impedance spectra and polarization curves, were frequently carried out. The impedance spectra have been analyzed through the distribution of relaxation times method and the cell study complemented with a post-mortem analysis. During its operation, the cell sequentially experienced several events to which thermal-cycling and intrinsic degradation have been correlated. Experimental results revealed that cathode humidification was the dominant contribution to the performance degradation, where strontium segregation has been observed and the formation of some insulating phases is suspected. This work is one of the first attempts to carry out an endurance test with real-time diagnosis by in-situ and in-operando gas and temperature analysis, thus monitoring in real conditions the electrochemical, chemical and thermal activity of the anode side in a commercial single solid oxide fuel cell.

Keywords: Cathode degradation; Internal reforming; Large-area IT-SOFC; Water accumulation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918316908
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:235:y:2019:i:c:p:625-640

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.10.117

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:235:y:2019:i:c:p:625-640