Heliostat field cleaning scheduling for Solar Power Tower plants: A heuristic approach
Thomas Ashley,
Emilio Carrizosa and
Enrique Fernández-Cara
Applied Energy, 2019, vol. 235, issue C, 653-660
Abstract:
Soiling of heliostat surfaces due to local climate has a direct impact on their optical efficiency and therefore a direct impact on the productivity of the Solar Power Tower plant. Cleaning techniques applied are dependent on plant construction and current schedules are normally developed considering heliostat layout patterns, providing sub-optimal results. In this paper, a method to optimise cleaning schedules is developed, with the objective of maximising energy generated by the plant. First, an algorithm finds a cleaning schedule by solving an integer program, which is then used as a starting solution in an exchange heuristic. Since the optimisation problems are of large size, a p-median type heuristic is performed to reduce the problem dimensionality by clustering heliostats into groups to be cleaned in the same period.
Keywords: Solar energy; Routing problems; Scheduling; Cluster analysis (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918317100
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:235:y:2019:i:c:p:653-660
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.11.004
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().