EconPapers    
Economics at your fingertips  
 

State-of-life prognosis and diagnosis of lithium-ion batteries by data-driven particle filters

F. Cadini, C. Sbarufatti, F. Cancelliere and M. Giglio

Applied Energy, 2019, vol. 235, issue C, 672 pages

Abstract: The aim of this study is that of presenting a new diagnostic and prognostic method aimed at automatically detecting deviations from the expected degradation dynamics of the batteries due to changes in the operating conditions, or, possibly, anomalous behaviors, and predicting their remaining useful life (RUL) in terms of their state-of-life (SOL), without needing to derive any complex physics-based models and/or gather huge amounts of experimental data to cover all possible operative/fault conditions. The proposed method in fact exploits the real time framework offered by particle filtering and resorts to neural networks in order to build a suitable parametric measurement equation, which provides the algorithm with the capability of automatically adjusting to different battery’s dynamic behaviors. The results of this study demonstrate the satisfactory performances of the algorithm in terms of adaptability and diagnostic sensibility, with reference to suitably identified case studies based on actual Lithium-Ion battery capacity data taken from the prognostics data repository of the NASA Ames Research Center database and of the CALCE Battery Group.

Keywords: Li-ion batteries; State-of-life; Prognosis; Anomaly detection; Particle filters; Neural networks (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918316635
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:235:y:2019:i:c:p:661-672

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.10.095

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:235:y:2019:i:c:p:661-672