State-of-life prognosis and diagnosis of lithium-ion batteries by data-driven particle filters
F. Cadini,
C. Sbarufatti,
F. Cancelliere and
M. Giglio
Applied Energy, 2019, vol. 235, issue C, 672 pages
Abstract:
The aim of this study is that of presenting a new diagnostic and prognostic method aimed at automatically detecting deviations from the expected degradation dynamics of the batteries due to changes in the operating conditions, or, possibly, anomalous behaviors, and predicting their remaining useful life (RUL) in terms of their state-of-life (SOL), without needing to derive any complex physics-based models and/or gather huge amounts of experimental data to cover all possible operative/fault conditions. The proposed method in fact exploits the real time framework offered by particle filtering and resorts to neural networks in order to build a suitable parametric measurement equation, which provides the algorithm with the capability of automatically adjusting to different battery’s dynamic behaviors. The results of this study demonstrate the satisfactory performances of the algorithm in terms of adaptability and diagnostic sensibility, with reference to suitably identified case studies based on actual Lithium-Ion battery capacity data taken from the prognostics data repository of the NASA Ames Research Center database and of the CALCE Battery Group.
Keywords: Li-ion batteries; State-of-life; Prognosis; Anomaly detection; Particle filters; Neural networks (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918316635
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:235:y:2019:i:c:p:661-672
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.10.095
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().