Combined heat, cooling, and power systems based on half effect absorption chillers and polymer electrolyte membrane fuel cells
Gabriele Loreti,
Andrea L. Facci,
Ilaria Baffo and
Stefano Ubertini
Applied Energy, 2019, vol. 235, issue C, 747-760
Abstract:
Fuel cell based trigeneration plants, that utilize absorption chillers to convert waste heat into cooling energy, are a promising technology to satisfy heat, power, and cooling demand in warm climates. Polymer electrolyte membrane fuel cells, that operate at low temperature (<100°C), are the most technologically mature among the several types of fuel cells. Thermally activated cooling technologies are widely utilized in trigeneration plants to improve their efficiency. However, absorption chillers require relatively high grade thermal energy and their coupling with low temperature fuel cells is relatively untapped.
Keywords: PEMFC CHCP; Half-effect absorption chiller; Power plant modeling; Optimization; GHG (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918316805
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:235:y:2019:i:c:p:747-760
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.10.109
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().