EconPapers    
Economics at your fingertips  
 

City-level water-energy nexus in Beijing-Tianjin-Hebei region

Xian Li, Lili Yang, Heran Zheng, Yuli Shan, Zongyong Zhang, Malin Song, Bofeng Cai and Dabo Guan ()

Applied Energy, 2019, vol. 235, issue C, 827-834

Abstract: Water-energy nexus in a city can either prompt or undermine its development. Yet in China, the relevant research is rarely found. This study accounts the city-level water-energy nexus in Beijing-Tianjin-Hebei region in 2012 from both production and consumption perspectives, where input-output analysis based on city-level input-output tables are applied to conduct consumption-based accounts. Regarding water for energy, Beijing, Tianjin and Tangshan occupy the largest amounts of water for production in the energy sector, at 203 million tonnes (Mt), 148 Mt and 118 Mt, and they also consume most water for energy, at 6690 Mt, 1328 Mt and 1476 Mt. In terms of energy for water, Shijiazhuang and Tianjin have the largest amounts of CO2 emissions for production and consumption respectively, at 28 thousand tonnes (Kt) and 1746 Kt. Furthermore, local authorities should prioritise electricity sector as it holds 69% and 72% of the total water amounts for production and consumption in the energy sector. Besides, integrated management is crucial for cities with low water and energy efficiency (Baoding and Zhangjiakou), and for large CO2 emitters in Hebei province in order to ensure their water and energy sustainability without stunting their economic growth.

Keywords: City-level water-energy nexus; Beijing-Tianjin-Hebei region; Input-output analysis; Sustainability (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918316659
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:235:y:2019:i:c:p:827-834

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.10.097

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:235:y:2019:i:c:p:827-834