EconPapers    
Economics at your fingertips  
 

A review and discussion of decomposition-based hybrid models for wind energy forecasting applications

Zheng Qian, Yan Pei, Hamidreza Zareipour and Niya Chen

Applied Energy, 2019, vol. 235, issue C, 939-953

Abstract: With the continuous growth of wind power integration into the electrical grid, accurate wind power forecasting is an important component in management and operation of power systems. Given the challenging nature of wind power forecasting, various methods are presented in the literature to improve wind power forecasting accuracy. Among them, combining different techniques to construct hybrid models has been frequently reported in the literature. Decomposition-based models are a family of hybrid models that firstly decompose the wind speed/power time series into relatively more stationary subseries, and then build forecasting models for each subseries. In this paper, we present a comprehensive review of decomposition-based wind forecasting methods in order to explore their effectiveness. Decomposition-based hybrid forecasting models are classified into different groups based on the decomposition methods, such as, wavelet, empirical mode decomposition, seasonal adjust methods, variational mode decomposition, intrinsic time-scale decomposition, and bernaola galvan algorithm. We discuss decomposition methods in the context of alternative forecasting algorithms, and explore the challenges of each method. Comparative analysis of various decomposition-based models is also provided. We also explore current research activities and challenges, and identify potential directions for future research on this subject.

Keywords: Wind forecasting; Hybrid models; Decomposition-based models (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (69)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918316489
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:235:y:2019:i:c:p:939-953

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.10.080

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:235:y:2019:i:c:p:939-953