Evaluation of energy density as performance indicator for thermal energy storage at material and system levels
Joaquim Romaní,
Jaume Gasia,
Aran Solé,
Hiroki Takasu,
Yukitaka Kato and
Luisa F. Cabeza
Applied Energy, 2019, vol. 235, issue C, 954-962
Abstract:
The increase of the capacity factor of thermal processes which use renewable energies is closely linked to the implementation of thermal energy storage (TES) systems. Currently, TES systems can be classified depending on the technology for storing thermal: sensible heat, latent heat, and sorption and chemical reactions (usually known as thermochemical energy storage). However, there is no standardized procedure for the evaluation of such technologies, and therefore the development of performance indicators which suit the requisites of the final users becomes an important goal. In the present paper, the authors identified the energy density as an important performance indicator for TES, and evaluated it at both material and system levels. This approach is afterwards applied to prototypes covering the three TES technologies: a two-tank molten salts sensible storage system, a shell-and-tube latent heat storage system, and a magnesium oxide and water chemical storage system. The evaluation of the energy density highlighted the difference of its value at the material value, which presents a theoretical maximum, and the results at system level, which considers all the parts required for operating the TES, and thus presents a significantly lower value. Moreover, the proposed approach captured the effect of the complexity and overall size of the system, showing the relevance of this performance indicator for evaluating technologies for applications in which volume is a limiting parameter.
Keywords: Thermal energy storage (TES); Energy density; Sensible heat; Latent heat; Chemical reaction; Performance indicator (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918317343
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:235:y:2019:i:c:p:954-962
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.11.029
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().