District energy system optimisation under uncertain demand: Handling data-driven stochastic profiles
B. Pickering and
R. Choudhary
Applied Energy, 2019, vol. 236, issue C, 1138-1157
Abstract:
Current district energy optimisation depends on perfect foresight. However, we rarely know how the future will transpire when undertaking infrastructure planning. A key uncertainty that has yet to be studied in this context is building-level energy demand. Energy demand varies stochastically on a daily basis, owing to activities and weather. Yet, most current district optimisation models consider only the average demand. Studies that incorporate demand uncertainty ignore the temporal autocorrelation of energy demand, or require a detailed engineering model for which there is no validation against real consumption data. In this paper, we propose a new 3-step methodology for handling demand uncertainty in mixed integer linear programming models of district energy systems. The three steps are: scenario generation, scenario reduction, and scenario optimisation. Our proposed framework is data-centric, based on sampling of historic demand data using multidimensional search spaces. 500 scenarios are generated from the historical demand of multiple buildings, requiring historical data to be nonparametrically sampled whilst maintaining interdependence of hourly demand in a day. Using scenario reduction, we are able to select a subset of scenarios that best represent the probability distribution of our large number of initial scenarios. The scenario optimisation step constitutes minimising the cost of technology investment and operation, where all realisations of demand from the reduced scenarios are probabilistically weighted in the objective function. We applied these three steps to a real district development in Cambridge, UK, and an illustrative district in Bangalore, India.
Keywords: District energy systems; Mixed integer linear optimisation; Scenario optimisation; Scenario reduction; Data-driven demand (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918318555
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:236:y:2019:i:c:p:1138-1157
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.12.037
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().