EconPapers    
Economics at your fingertips  
 

Apples or oranges? Identification of fundamental load shape profiles for benchmarking buildings using a large and diverse dataset

June Young Park, Xiya Yang, Clayton Miller, Pandarasamy Arjunan and Zoltan Nagy

Applied Energy, 2019, vol. 236, issue C, 1280-1295

Abstract: Buildings are responsible for 30–40% of the anthropogenic greenhouse gas emissions and energy consumption worldwide. Thus, reducing the overall energy use and associated emissions in buildings is crucial for meeting sustainability goals for the future. In recent years, smart energy meters have been deployed to enable monitoring of energy use data with hourly or sub-hourly temporal resolution. The concurrent rise of information technologies and data analytics enabled the development of novel applications such as customer segmentation, load profiling, demand response, energy forecasting and anomaly detection. In this paper, we address load profiling and benchmarking, i.e., determining peer groups for buildings. Traditionally, static characteristics, e.g., primary space use (PSU) together with the annual energy-use-intensity (EUI) have been used to compare the performance of buildings. Data-driven benchmarking approaches have begun to also consider the shape of the load profiles as a means for comparison. In this work, we identify three fundamental load shape profiles that characterize the temporal energy use in any building. We obtain this result by collecting a dataset of unprecedented variety in size (3829 buildings) and primary use (75 programs), and applying a rigorous clustering analysis followed by entropy calculation for each building. The existence of fundamental load shape profiles challenges the man-made, artificial classification of buildings. We demonstrate in a benchmarking application that the resulting data-driven groups are more homogeneous, and therefore more suitable for comparisons between buildings. Our findings have potential implications for portfolio management, building and urban energy simulations, demand response and renewable energy integration in buildings.

Keywords: Building energy; Load profile; Energy benchmarking; Unsupervised learning; Data analytic; Visual analytic (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918318439
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:236:y:2019:i:c:p:1280-1295

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.12.025

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:236:y:2019:i:c:p:1280-1295