EconPapers    
Economics at your fingertips  
 

Energy management and optimal storage sizing for a shared community: A multi-stage stochastic programming approach

Faeza Hafiz, Anderson Rodrigo de Queiroz, Poria Fajri and Iqbal Husain

Applied Energy, 2019, vol. 236, issue C, 42-54

Abstract: The aim of this paper is to propose a new energy management framework and storage sizing for a community composed of multiple houses and distributed solar generation. Uncertainties associated with solar generation and electricity demand are included to make the mathematical models more realistic, and as a result, provide more accurate control strategies to manage storage devices utilization. To evaluate that, a multi-stage stochastic program model designed to minimize community electricity purchase cost per day is used to support decision-making by creating control policies for energy management. Two different strategies are created to represent the interest of a single household (the individual energy management - IEM) and households that share their assets with the community (shared energy management - SEM). Our strategies consider time-of-use rates (ToU), load and resource variation during different seasons, with their distinct days of the year, to calculate net present value (NPV) associated with the energy savings. IEM and SEM are then used in a framework designed to establish the requirement of optimal energy storage size for each house of the community based on NPV values. The results of this study for an analysis considering a community with five houses show that the proposed SEM strategy reduces the overall electricity purchase costs for a summer day up to 11% and 3% compared with heuristic and IEM control respectively. Moreover, our results suggest that the application of the methodology increases peak energy savings up to 17%, scales up solar generation usage up to 23%, and the optimal storage size obtained in the shared community case reduces up to 50%.

Keywords: Energy management; Multi-stage stochastic programming; Optimal storage sizing; Sampling-based decomposition; Solar energy; Energy storage (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918317963
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:236:y:2019:i:c:p:42-54

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

 
Page updated 2019-03-16
Handle: RePEc:eee:appene:v:236:y:2019:i:c:p:42-54