Vanadium redox flow battery with slotted porous electrodes and automatic rebalancing demonstrated on a 1 kW system level
Arjun Bhattarai,
Nyunt Wai,
Rüdiger Schweiss,
Adam Whitehead,
Günther G. Scherer,
Purna C. Ghimire,
Tuti M. Lim and
Huey Hoon Hng
Applied Energy, 2019, vol. 236, issue C, 437-443
Abstract:
Capacity loss due to electrolyte crossover through the membrane and pump losses due to pressure drop at the porous electrodes are widely known issues in vanadium redox flow batteries during operation. In commercial systems, these losses account for a significant reduction in the overall efficiency. Previous studies have been focused on the development of new membranes to solve the capacity loss, and design modification to reduce the pressure drop. In this work, we propose unique solutions to solve both problems and are demonstrated in a multi-cell stack for the first time. A 20-cell, 1 kW vanadium redox flow battery stack was assembled using thin bipolar plates and porous electrodes featuring interdigitated flow channels. Such a stack design is novel of its kind and can mitigate various problems associated with flow distribution and pump power in flow batteries. In addition, the electrolyte tanks were shunted together to rebalance the electrolyte automatically. The stack showed a very good and stable performance with an energy efficiency of 80.5% at a current density of 80 mA cm−2. The use of hydraulic shunt resulted in a constant capacity over 250 cycles while the use of flow channels on the porous electrodes resulted in ∼40% reduction in pressure drop, compared to a stack with standard felts. The reduction in pressure drop by employing flow channels reduced the pump power proportionally. Overall, capacity retention and utilization of active materials have been improved substantially. These methods are simple and applicable to any size of vanadium redox flow battery.
Keywords: Vanadium redox flow battery; 1 kW stack; Hydraulic shunt; Polarization; Pump loss (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191831821X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:236:y:2019:i:c:p:437-443
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.12.001
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().