Feasibility study of CO2 huff 'n' puff process to enhance heavy oil recovery via long core experiments
Xiang Zhou,
Qingwang Yuan,
Zhenhua Rui,
Hanyi Wang,
Jianwei Feng,
Liehui Zhang and
Fanhua Zeng
Applied Energy, 2019, vol. 236, issue C, 526-539
Abstract:
In order to study a potential way to store CO2 and enhance heavy oil production performance, five experiments are implemented on the CO2 huff 'n' puff process using long cores. The production profiles of the CO2 huff 'n' puff process are analyzed, including pressure, heavy oil recovery factor, gas production, cumulative gas oil ratio, and pressure difference. The pressure drops indicate the CO2 diffusion in heavy oil. The pressure drop in the first cycle is much lower than those in the subsequent cycles. The heavy oil recovery factor is higher than 32.75% and can reach as high as 38.02% under the pressure depletion rate of 1 kPa/min. A main trend observed for each test is that the heavy oil recovery factor decreases with increases in the cycle number. With oil production, a growing space is available for CO2 injection in the core, resulting in a higher volume of injected CO2 together with increasing gas production and a cumulative gas oil ratio. With less heavy oil production, the pressure difference between the end port and the production port decreases with the cycle number increases. A novel equation is developed to study the relationship between CO2 production and heavy oil production, and the agreement between the equation and the experimental data is extremely high (R2>0.97). This novel equation can be applied to predict the production performance in the later production period in the same cycle and/or to predict the performance in the subsequent cycles. Via the analyzation of the production performance of the CO2 huff 'n' puff process in heavy oil under different pressure depletion rates and different soaking times, the effect parameters, including pressure depletion rates, soaking time and cycle numbers, are optimized in this study. The optimized pressure depletion rates, soaking time, and cycle numbers are 1 kPa/min, 5 h and 3 cycles, respectively. The optimized parameters gained in the tests were upscaled using the scaling criteria, and the upscaled parameters can be applied in the field pilot test to enhance heavy oil recovery using the CO2 huff 'n' puff process.
Keywords: CO2 injection; CO2 storage; Huff 'n' puff; Heavy oil; Enhanced oil recovery (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918318269
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:236:y:2019:i:c:p:526-539
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.12.007
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().