EconPapers    
Economics at your fingertips  
 

Modeling, air balancing and optimal pressure set-point selection for the ventilation system with minimized energy consumption

Gang Jing, Wenjian Cai, Xin Zhang, Can Cui, Xiaohong Yin and Huacai Xian

Applied Energy, 2019, vol. 236, issue C, 574-589

Abstract: Traditional static pressure reset control strategies commonly use a feedback indicator to reset the static pressure; this results in under-ventilation in certain zones and over-ventilation in others. Based on this issue, the objective of this study was to develop a model-based, improved, static pressure reset control strategy, providing a well-balanced system to eliminate under-ventilation and over-ventilation, while consuming minimal energy. In the study reported here, a comprehensive mathematical model was established to simulate the non-linear behavior of the ventilation system, and a supervised machine learning algorithm for a support vector machine was used to obtain values for unknown parameters in the model. The resulting model was then used as the basis for development of a damper position control method and to determine the damper position, given a desired airflow rate. An optimal, static pressure set-point selection method was also proposed using the developed model to calculate the minimum static pressure set-point in a closed-form. As a result, the revised system consumed less energy owing to the better-balanced system and optimized pressure set-point selection. Moreover, through the application of the damper position control method, the ventilation system was well-balanced and eliminated both under-ventilation and over-ventilation. Experimental tests were carried out to validate the performance of the proposed method in comparison with the conventional static pressure reset strategy, data from which were collected to train the proposed model.

Keywords: Ventilation; Air balancing; Energy saving; Machine learning; Support vector machine (SVM); Model-based method; Parameter identification; static pressure reset (SPR) (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918318440
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:236:y:2019:i:c:p:574-589

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.12.026

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:236:y:2019:i:c:p:574-589