EconPapers    
Economics at your fingertips  
 

Design of header and coil steam generators for concentrating solar power applications accounting for low-cycle fatigue requirements

Davide Ferruzza, Martin Ryhl Kærn and Fredrik Haglind

Applied Energy, 2019, vol. 236, issue C, 793-803

Abstract: Concentrating solar power plants are experiencing an increasing share in the renewable energy generation market. Among them, parabolic trough plants are the most commercially mature technology. These plants still experience many challenges, one of which is the cyclic daily start-up and shut-down procedures. These pose new challenges to industrially mature components like the steam generator system, as frequent load changes might decrease their lifetime considerably due to cyclic thermo-mechanical stress loads. In this context, the header and coil design is a promising configuration to minimize the stresses.

Keywords: Concentrating solar power; Parabolic trough power plants; Steam generator; Heat exchanger design; Heating rates (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918318488
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:236:y:2019:i:c:p:793-803

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.12.030

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:236:y:2019:i:c:p:793-803