EconPapers    
Economics at your fingertips  
 

Load profile analysis for reducing energy demands of production systems in non-production times

Patrick Dehning, Stefan Blume, Antal Dér, Dominik Flick, Christoph Herrmann and Sebastian Thiede

Applied Energy, 2019, vol. 237, issue C, 117-130

Abstract: Intensifying market pressure, extended environmental legislations, increasing environmental consciousness and rising energy prices are a major concern for production companies worldwide. Production of goods is responsible for about one-third of the global greenhouse gas emissions. As a consequence the energy demand in production and with this the energy costs for the production of a product are moving more into focus of decision makers. Depending on the shift and working system of a company, the energy demand during planned non-production times like free shifts, weekends or holidays can be significant. However, a lack of knowledge about realistically achievable electrical load levels in non-production times due to missing benchmarks can be observed in practice. As a consequence, related energy saving potentials remain undetected. Against this background, this paper presents a methodology to analyze the electrical load during non-production times using load duration curves. Performance indicators are developed allowing for a comparison between factories in order to identify energy saving potentials. Within this paper a tool is developed to easily compare different automotive factories and tested using real data of two large car manufacturers.

Keywords: Base load reduction; Non-production times; Load profiles; Load duration curves; Factory benchmarking (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919300492
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:237:y:2019:i:c:p:117-130

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.01.047

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:237:y:2019:i:c:p:117-130