EconPapers    
Economics at your fingertips  
 

A comprehensive analysis of food waste derived liquefaction bio-oil properties for industrial application

Wei-Hsin Chen, Yu-Ying Lin, Hsuah-Cheng Liu, Teng-Chien Chen, Chun-Hung Hung, Chi-Hui Chen and Hwai Chyuan Ong

Applied Energy, 2019, vol. 237, issue C, 283-291

Abstract: Hydrothermal liquefaction is a promising technology to convert wet biomass into bio-oil with high calorific value and without drying process. To evaluate the potential application of liquefaction bio-oil in industry, the present study aims to provide a comprehensive analysis on the properties of liquefaction bio-oil derived from food waste. The food waste is pretreated with K2CO3 at 100 °C for 1 h, followed by liquefaction in a semi-pilot reactor at 320 °C for 30 min. The higher heating value of produced bio-oil is 34.79 MJ kg−1, accounting for 53% increase when compared to the feedstock (22.74 MJ kg−1). The ignition and burnout temperatures of the bio-oil are lower than other liquefaction bio-oils, reflecting its higher reactivity and combustibility. Meanwhile, the bio-oil has a higher oxidation onset temperature than pyrolysis bio-oils, showing its higher thermal stability. The independent parallel reaction model in association with the particle swarm optimization indicates that the pyrolysis kinetics of the bio-oil can be approximated by four groups. The component analysis further reveals two important groups of fatty acids and amides in the bio-oil, stemming from the conversion of carbohydrate and protein in the food waste. The comprehensive analysis shows that the liquefaction bio-oil from food waste, characterized by higher energy density and better combustibility, is a potential substitute to the fossil fuels.

Keywords: Liquefaction; Food waste; Bio-oil and biocrude; Combustion and pyrolysis; Kinetics; Independent parallel reaction model (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918319032
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:237:y:2019:i:c:p:283-291

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.12.084

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:237:y:2019:i:c:p:283-291