A novel data-model fusion state-of-health estimation approach for lithium-ion batteries
Zeyu Ma,
Ruixin Yang and
Zhenpo Wang
Applied Energy, 2019, vol. 237, issue C, 836-847
Abstract:
In order to ensure the efficient, reliable, and safe operation of the lithium-ion battery system, an accurate battery state-of-health estimation is essential and remaining challenges. Here we propose a novel data-model fusion battery state-of-health estimation approach based on open-circuit-voltage parametric modeling considering the correlation between capacity degradation and the open-circuit-voltage changes. An open-circuit-voltage model is built to capture the aging behavior associated with the reactions progress in the cell. Then the battery state-of-health estimation approach is developed based on the correlation between capacity fade and the changes of the open-circuit-voltage model parameters. In addition, a data-driven based method is applied to identify the parameters of the proposed battery model to obtain the open-circuit-voltage online. The proposed state-of-health estimation approach has been verified by the cells experienced different aging paths. The results show that the average relative errors of the state-of-health estimation for all cells are less than 3% against different aging paths and levels.
Keywords: Lithium-ion battery; State of health estimation; Data-model fusion; Degradation mechanisms; Thermal and cycle aging (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918318907
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:237:y:2019:i:c:p:836-847
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.12.071
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().