Remaining useful life estimation for proton exchange membrane fuel cells using a hybrid method
Hao Liu,
Jian Chen,
Daniel Hissel and
Hongye Su
Applied Energy, 2019, vol. 237, issue C, 910-919
Abstract:
This paper proposes a complete hybrid prognostics method which can predict the degradation trend and estimate the remaining useful life of proton exchange membrane fuel cells (PEMFCs) under different current loads. The proposed hybrid prognostics method can be divided into two phases. In the first phase, the automatic machine learning algorithm that based on the evolutionary algorithm and the adaptive neuro-fuzzy inference system is proposed to predict the long-term degradation trend. In the second phase, based on the degradation data obtained in the first phase, the remaining useful life estimation is implemented by using a semi-empirical degradation model of PEMFCs and the proposed adaptive Unscented Kalman filter algorithm. Finally, the proposed hybrid prognostics method is validated by using the aging experimental data of PEMFCs. Test results show that the proposed hybrid prognostics method can achieve accurate long-term degradation trend prediction and remaining useful life estimation for PEMFCs.
Keywords: Prognostics; Remaining useful life; Proton exchange membrane fuel cells; Automatic machine learning; Adaptive Unscented Kalman filter (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (35)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919300236
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:237:y:2019:i:c:p:910-919
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.01.023
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().