EconPapers    
Economics at your fingertips  
 

Multifactor performance analysis of reversible solid oxide cells based on proton-conducting electrolytes

Nikolay Danilov, Julia Lyagaeva, Gennady Vdovin and Dmitry Medvedev

Applied Energy, 2019, vol. 237, issue C, 924-934

Abstract: Reversible solid oxide cells (rSOCs) based on proton-conducting electrolytes represent a relatively new and cost-effective possibility for carrying out chemical-to-electrical energy conversion in direct and reverse directions with very high efficiency and low environmental impact. Here we report our findings regarding a modernised approach of rSOC testing, which differs from the traditional characterisation of electrochemical cells, consisting in volt-ampere measurements and impedance spectroscopy analysis under open circuit voltage (OCV) conditions. Expanding the bias range from 0.4 to 1.6 V, the designed rSOC was studied in different (fuel cell, OCV, electrolysis cell) modes and its performance was successfully correlated with ohmic and electrode electrochemical responses depending on the measurement temperature and water vapour partial pressure in oxidant gas. On the basis of this approach, the following new results can be formulated: (i) the ohmic resistance of the proton-conducting electrolytes is a variable parameter depending on the bias in contrast to the convenient oxygen-ionic conductors, for which it is assumed to be a constant; (ii) the electrolyte exhibits predominating proton transport with an activation energy of ∼0.3 eV over the whole bias range; (iii) the output parameters should be correlated with the ohmic and polarisation resistances determined at certain biases (a voltage corresponding to the maximal power density realisation or a thermoneutral voltage) instead of those measured under OCV mode. Concluding, this approach allows the main external factors affecting the rSOC’s performance to be disclosed along with proposed means for its future optimisation in the applied direction.

Keywords: Energy conversion; Reversible solid oxide cells; Proton-conducting electrolytes; Hydrogen production; Applied electrochemistry (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191930056X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:237:y:2019:i:c:p:924-934

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.01.054

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:237:y:2019:i:c:p:924-934