EconPapers    
Economics at your fingertips  
 

Moore vs. Murphy: Tradeoffs between complexity and reliability in distributed energy system scheduling using software-as-a-service

Spencer Dutton, Chris Marnay, Wei Feng, Matthew Robinson and Andrea Mammoli

Applied Energy, 2019, vol. 238, issue C, 1126-1137

Abstract: Software-based optimization of building control strategies, including scheduling, has the potential to improve the performance of existing complex heating, ventilation, and air conditioning (HVAC), storage, and other systems—especially if temporally variable energy production, such as solar thermal or photovoltaics, is included. If reductions in energy bills can be achieved using optimized control strategies that take advantage of cost-saving opportunities, such as time-of-use pricing, the additional bill savings can cover further efficiency investment costs. As computer processing becomes cheaper over time (Moore’s Law), opportunities to perform complex control optimization become more abundant, and these can be performed remotely as software-as-a-service (SaaS). However, by “perfecting” our control strategies, we run an increased risk that when something unexpected happens (Murphy’s Law), the consequences of failure are greater. This study used simulation to explore the potential benefits of HVAC schedule optimization, delivery, and implementation using a SaaS paradigm, at various levels of complexity. Implementing optimal schedules in a model of an efficient building’s HVAC system, the study predicts energy cost savings of up to 10% compared to the naïve reference control strategy. Optimizing more system control variables increases the potential energy cost savings; however, these savings could be compromised by failures in communication inherent in delivering schedules via SaaS. The additional cost of energy resulting from the risk of increased demand charges generally increased with increased communication failure to a much larger extent than the risk of increased energy use charges. This work suggests that moderate improvements in performance, achieved at low cost by simple means, may be more effective than highly optimized schemes, which are more susceptible to failure due to their dependence on complex interactions between systems.

Keywords: Distributed energy resources; Control optimization; Software-as-a-service; HVAC complexity, microgrids (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919300650
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:238:y:2019:i:c:p:1126-1137

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.01.067

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:238:y:2019:i:c:p:1126-1137