Short-term scenario-based probabilistic load forecasting: A data-driven approach
Abdolrahman Khoshrou and
Eric J. Pauwels
Applied Energy, 2019, vol. 238, issue C, 1258-1268
Abstract:
Scenario-based probabilistic forecasting models have been explored extensively in the literature in recent years. The performance of such models evidently depends to a large extent on how different input (temperature) scenarios are being generated. This paper proposes a generic framework for probabilistic load forecasting using an ensemble of regression trees. A major distinction of the current work is in using matrices as an alternative representation for quasi-periodic time series data. The singular value decomposition (SVD) technique is then used herein to generate temperature scenarios in a robust and timely manner. The strength of our proposed method lies in its simplicity and robustness, in terms of the training window size, with no need for subsetting or thresholding to generate temperature scenarios. Furthermore, to systematically account for the non-linear interactions between different variables, a new set of features is defined: the first and second derivatives of the predictors. The empirical case studies performed on the data from the load forecasting track of the Global Energy Forecasting Competition 2014 (GEFCom2014-L) show that the proposed method outperforms the top two scenario-based models with a similar set-up.
Keywords: Time-series analysis; Energy forecasting; Probabilistic forecasting; Time-varying effects; Singular value decomposition (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919301412
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:238:y:2019:i:c:p:1258-1268
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.01.155
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().