EconPapers    
Economics at your fingertips  
 

Deep learning framework to forecast electricity demand

Jatin Bedi and Durga Toshniwal

Applied Energy, 2019, vol. 238, issue C, 1312-1326

Abstract: The increasing world population and availability of energy hungry smart devices are major reasons for alarmingly high electricity consumption in the current times. So far, various simulation tools, engineering and Artificial Intelligence based methods are being used to perform optimal electricity demand forecasting. While engineering methods use dynamic equations to forecast, the AI-based methods use historical data to predict future demand. However, modeling of nonlinear electricity demand patterns is still underdeveloped for robust solutions as the existing methods are useful only for handling short-term dependencies. Moreover, the existing methods are static in nature because they are purely historical data driven. In this paper, we propose a deep learning based framework to forecast electricity demand by taking care of long-term historical dependencies. Initially, the cluster analysis is performed on the electricity consumption data of all months to generate season based segmented data. Subsequently, load trend characterization is carried out to have a deeper insight of metadata falling into each of the clusters. Further, Long Short Term Memory network multi-input multi-output models are trained to forecast electricity demand based upon the season, day and interval data. In the present work, we have also incorporated the concept of moving window based active learning to improve prediction results. To demonstrate the applicability and effectiveness of the proposed approach, it is applied to the electricity consumption data of Union Territory Chandigarh, India. Performance of the proposed approach is evaluated by comparing the prediction results with Artificial Neural Network, Recurrent Neural Network and Support Vector Regression models.

Keywords: Energy analytic; Electricity demand prediction; LSTM network; Active forecasting; Recurrent neural network (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (91)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919301217
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:238:y:2019:i:c:p:1312-1326

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.01.113

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:238:y:2019:i:c:p:1312-1326