Recent development of membrane for vanadium redox flow battery applications: A review
Yu Shi,
Chika Eze,
Binyu Xiong,
Weidong He,
Han Zhang,
T.M. Lim,
A. Ukil and
Jiyun Zhao
Applied Energy, 2019, vol. 238, issue C, 202-224
Abstract:
Responding to rapid growth of the renewable energy applications, it is crucial to develop low cost and high efficient large-scale energy storage systems in order to smooth out the intermittency of the renewable energy resources. As one of the most promising large-scale energy storage systems, vanadium redox flow battery (VRFB) has attracted great attention in recent times. Membrane is one of the key components of VRFB which not only affects the whole cyclability performance but also determines the economic viability of the system. The membrane separates the positive and negative half-cells and prevents the cross-mixing of vanadium ions while providing required ionic conductivity. The ideal membrane should have good ionic exchange capacity; high ionic conductivity, low water uptake, swelling ratio, area electrical resistance and vanadium and other poly-halide ions permeability; and good chemical stability, as well as low cost. Numerous efforts have been spent on the development of different types of membranes, including different functional groups ion exchange membrane and non-ionic porous membrane. This paper reviews the research on membranes in VRFB system, including the properties, development of traditional commercial membranes as well as recently developed membranes. It explores various methods of fabrication of the membrane products which have received relatively little attention. A detailed summary table of the new membranes with their properties, fabrication and costs is provided to serve as a reference guide for researchers and industrialists interested in VRFB system building and dynamic modelling set. Subsequently, the challenges and future directions of membrane research are examined.
Keywords: Vanadium redox flow batteries; Membrane; Properties (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918319081
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:238:y:2019:i:c:p:202-224
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.12.087
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().