EconPapers    
Economics at your fingertips  
 

A practical feature-engineering framework for electricity theft detection in smart grids

Rouzbeh Razavi, Amin Gharipour, Martin Fleury and Ikpe Justice Akpan

Applied Energy, 2019, vol. 238, issue C, 494 pages

Abstract: Despite many potential advantages, Advanced Metering Infrastructures have introduced new ways to falsify meter readings and commit electricity theft. This study contributes a new model-agnostic, feature-engineering framework for theft detection in smart grids. The framework introduces a combination of Finite Mixture Model clustering for customer segmentation and a Genetic Programming algorithm for identifying new features suitable for prediction. Utilizing demand data from more than 4000 households, a Gradient Boosting Machine algorithm is applied within the framework, significantly outperforming the results of prior machine-learning, theft-detection methods. This study further examines some important practical aspects of deploying theft detection including: the detection delay; the required size of historical demand data; the accuracy in detecting thefts of various types and intensity; detecting irregular and unseen attacks; and the computational complexity of the detection algorithm.

Keywords: Theft detection; Feature engineering; Data mining; Smart meters (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919300753
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:238:y:2019:i:c:p:481-494

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.01.076

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:238:y:2019:i:c:p:481-494