Thermodynamic and economic analysis of the integration of high-temperature heat pumps in trigeneration systems
Luca Urbanucci,
Joan Carles Bruno and
Daniele Testi
Applied Energy, 2019, vol. 238, issue C, 516-533
Abstract:
Polygeneration energy systems are proven to be a reliable, competitive and efficient solution for energy production. The recovery of otherwise wasted energy is the primary reason for the high efficiency of polygeneration systems. In this paper, the integration of a high-temperature heat pump within a trigeneration system is investigated. The heat pump uses the low-temperature heat from the condenser of the absorption chiller as heat source to produce hot water. A numerical model of the heat pump cycle is developed to evaluate the technical viability of current heat pump technology for this application and assess the performance of different working fluids. An exergy analysis is performed to show the advantages of the novel trigeneration system with respect to traditional systems for energy production. Moreover, a levelized cost of electricity method is applied to the proposed energy system to show its generic economic feasibility. Finally, actual energy demand data from an Italian pharmaceutical factory are considered to evaluate the economic savings obtainable with the integrated system, implemented in a case study. A two-level algorithm is proposed for the economic optimization of the investment. The synthesis/design problem is addressed by a genetic algorithm and the optimal operation problem is solved by a linear programming method. Results show that the integration of a high-temperature heat pump within a trigeneration system provides flexibility to cover variable energy demands and achieve valuable economic and energy performances, with global cost savings of around 40% with respect to separate production and around 10% with respect to traditional cogeneration and trigeneration systems.
Keywords: High-temperature heat pump; CCHP; Levelized cost of electricity; Exergy; Optimization; Genetic algorithm (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919301163
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:238:y:2019:i:c:p:516-533
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.01.115
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().