Prospect for small-hydropower installation settled upon optimal water allocation: An action to stimulate synergies of water-food-energy nexus
Yanlai Zhou,
Li-Chiu Chang,
Tin-Shuan Uen,
Shenglian Guo,
Chong-Yu Xu and
Fi-John Chang
Applied Energy, 2019, vol. 238, issue C, 668-682
Abstract:
The incorporation of renewable power generation into existing water supply systems is known to have far-reaching influences on system operation in response to booming urbanization. This study proposed a holistic system-wide solution driven by water resources perspectives encouraging small-hydropower generation using artificial intelligence techniques to leverage the synergies of the Water-Food-Energy (WFE) Nexus. The Shihmen Reservoir and its water supply system serving the public and agricultural sectors in northern Taiwan constituted the study case. The proposed three-faceted approach was explored systematically through: optimizing multi-sectoral water allocation, maximizing the installation of small-hydropower turbines aligned with the obtained optimal multi-sectoral water allocation, and uplifting the synergistic benefits of the WFE Nexus steered by the optimal water allocation and small-hydropower installation. The findings pointed out that the derived optimal water allocation could greatly alleviate water shortage conditions and improve reservoir water retention while the acquired optimal small-hydropower installation scheme could favor hydropower output without reducing water supply to demanding sectors. Taking the M-5 operational rule curves simulation as the benchmark, the comparative results demonstrated that the multi-year joint optimization under the collaboration of water allocation and small-hydropower installation could offer mutually beneficial outcomes on the WFE Nexus: largely mitigate the average annual water shortage index by up to 40.0% (water sector), boost the average annual food production by as high as 10.6% (food sector), and lift the average annual hydropower output by 7.5% (17 million USD/yr; energy sector), respectively. This study not only opens new perspectives on cleaner energy production benefiting WFE Nexus synergies but suggests policymakers with executable strategies on small-hydropower practice in the light of sustainable development, which carves a niche in small-hydropower practice and contributes to the fulfillment of future energy needs.
Keywords: Multi-sectoral water allocation; Small-hydropower; Reservoir operation; Artificial intelligence (AI); Taiwan (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919300716
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:238:y:2019:i:c:p:668-682
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.01.069
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().