Increasing osmotic power and energy with maximum power point tracking
Jonathan Maisonneuve and
Sanjana Chintalacheruvu
Applied Energy, 2019, vol. 238, issue C, 683-695
Abstract:
A feedback control system is developed for coordinated control of feed rates, draw rates, and loading on an osmotic power system. Carefully balancing these parameters in order to reduce the overall effect of various non-ideal phenomena has been previously discussed in the literature, however this is the first-ever system developed for automated, real-time, simultaneous control of all three of these operating parameters. The ability of the system to achieve maximum net power output is demonstrated for various commercial membranes, in response to fouling, and for both stand-alone pressure retarded osmosis as well as for combined reverse osmosis and pressure retarded osmosis application. Results provide insight into best operating conditions which can be helpful for rule of thumb design, and also clearly show that best conditions are case specific, and that osmotic energy conversion systems ultimately require feedback control for efficient performance especially in response to dynamic phenomena such as membrane fouling. The tradeoff between net power and energy is also demonstrated, and a maximum energy controller is also described.
Keywords: Maximum power point tracking; Pressure retarded osmosis; Forward osmosis; Salinity gradient; Renewable energy (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919301242
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:238:y:2019:i:c:p:683-695
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.01.110
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().