Using electrical energy storage in residential buildings – Sizing of battery and photovoltaic panels based on electricity cost optimization
Juha Koskela,
Antti Rautiainen and
Pertti Järventausta
Applied Energy, 2019, vol. 239, issue C, 1175-1189
Abstract:
The popularity of small-scale residential energy production using photovoltaic power generation is predicted to increase. Self-production of electricity for self-consumption has become profitable mainly because of high-distribution costs and taxes imposed by the service providers on commercially produced electricity or because of the subsidies which reduce installation costs. Electrical energy storage can be used to increase the self-consumption potential of photovoltaic power. Additionally, electrical energy storage can lead to other benefits such as demand response or avoiding high load peaks. In this study, the profitability and sizing of a photovoltaic system with an associated electrical energy storage are analyzed from an economic perspective. The novel theory of sizing for profitability is presented and demonstrated using case studies of an apartment building and detached houses in Finland. To maximize the benefits, several alternative models for electricity metering and pricing are used and compared. The results demonstrated that the optimal size of the photovoltaic system could be increased by using electrical energy storage and suitable electricity pricing. This could lead to an increasing amount of photovoltaic production in the residential sector. Additionally, it is possible that when all the incentives are taken into account, electrical energy storage in combination with photovoltaic power generation would be more profitable than photovoltaic power generation alone. Photovoltaic power generation also increased the profitability of electrical energy storage, which could mean that the implementation of electrical energy storage in the residential sector could likewise increase.
Keywords: Cost optimization; Energy community model; Energy storage; Photovoltaic; Residential building; Self-consumption (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (55)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919303113
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:239:y:2019:i:c:p:1175-1189
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.02.021
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().