Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube
Xiaohu Yang,
Jiabang Yu,
Zengxu Guo,
Liwen Jin and
Ya-Ling He
Applied Energy, 2019, vol. 239, issue C, 142-156
Abstract:
Thermal energy storage technology has attracted extensive attentions due to its remarkable energy-saving benefits. However, the low thermal conductivity of phase change materials seriously limits the energy storage efficiency, which put forward more stringent requirements for heat transfer enhancement. In this study, a two-dimensional axisymmetric simulation model with natural convection was established for the shell-and-tube thermal energy storage unit. Open-cell metal foam with a porosity of 0.94 and pore density of 15 pore per inch was employed to be arranged in either heat transfer fluid or phase change materials domains. The effects of the metal foam location and the metal foam porosity on the heat storage performance were studied. The numerical method was verified by experimental measurement, achieving good agreement. Results demonstrated that metal foam can significantly enhance heat transfer due mainly to the reduction of thermal resistance in heat transfer fluid. The case that both domains for heat transfer fluid and phase change materials were embedded in porous media can provide the best heat transfer enhancement. Compared with smooth tube without metal foam, the full melting time for this case was reduced by 88.548%; meanwhile, temperature response rate, heat flux and j-factor was increased by 834.27%, 774.90%, 5186.91% respectively. Besides, embedding metal foam into phase change materials can improve the temperature uniformity of phase change materials.
Keywords: Phase change materials; Metal foam; Thermal energy; Porosity; Numerical simulation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (40)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919300819
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:239:y:2019:i:c:p:142-156
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.01.075
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().