Power-saving exploration for high-end ultra-slim laptop computers with miniature loop heat pipe cooling module
Guohui Zhou,
Ji Li and
Zizhou Jia
Applied Energy, 2019, vol. 239, issue C, 859-875
Abstract:
In this paper, an active air-cooling module based on a 1-mm-thick ultrathin miniature loop heat pipe with a flat evaporator for high-end ultra-slim laptop computers is presented and studied. Systematic experimental investigations were conducted under natural air convection and forced air cooling conditions with different fan voltages. The results indicated that the miniature loop heat pipe module could effectively dissipate a heat load of 12 W at all test orientations under natural convection with zero power consumption when the chip-junction temperatures were below 85 °C. Under forced air cooling, the proposed miniature loop heat pipe module had almost identical cooling performance at all test orientations when the fan input voltages were changed from 5 V to 2 V. Aided by infrared photography and theoretical analysis, the unique operation mechanism for the module was revealed. Finally, in a 35 °C temperature humidity chamber, the module could dissipate 25 W at a fan voltage of 5 V (22 W at 2 V) with the chip-junction temperature below 85 °C, showing a promising and energy-saving thermal management solution for high-end ultra-slim laptop computers. The results indicate that by using the proposed module, cooling energy savings of up to 80% could be realized compared to the current applied miniature heat pipe module in a laptop computer.
Keywords: Miniature loop heat pipe; Ultra-slim; Thermal management; Energy saving; Laptop-computer cooling (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919302867
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:239:y:2019:i:c:p:859-875
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.01.258
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().