Experimental investigation into effects of high reactive fuel on combustion and emission characteristics of the Diesel - Natural gas Reactivity Controlled Compression Ignition engine
Ehsan Ansari,
Tyler Menucci,
Mahdi Shahbakhti and
Jeffrey Naber
Applied Energy, 2019, vol. 239, issue C, 948-956
Abstract:
Reactivity Controlled Compression Ignition (RCCI) engines hold promise for decreasing NOx and particulate emissions. RCCI engines use direct injection (DI) to introduce a high reactivity fuel into the cylinder while a lower reactivity fuel is port fuel injected (PFI). A large reactivity difference between high reactive (diesel) and low reactive (natural gas) fuels provides a strong control variable for phasing and shaping combustion heat release in RCCI engines.
Keywords: RCCI; Cetane number; High reactive diesel; Natural gas; Dual fuel engines (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919302843
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:239:y:2019:i:c:p:948-956
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.01.256
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().