Performance evaluation of thermochemical energy storage system based on lithium orthosilicate and zeolite
Hiroki Takasu,
Hitoshi Hoshino,
Yoshiro Tamura and
Yukitaka Kato
Applied Energy, 2019, vol. 240, issue C, 5 pages
Abstract:
High-temperature thermal energy can be produced from renewable power sources such as high-temperature gas-cooled reactors and high-temperature thermal processes, without environmental pollution. Integration of thermochemical energy storage (TcES) systems within power generation systems provides flexible options for future power generation. This study evaluates the performance of a TcES system based on Li4SiO4/zeolite/CO2 for thermal energy storage at ∼700 °C. Isothermal experiments with Li4SiO4, accessed through a solid-state reaction method, revealed that carbonation and decarbonation were almost complete after 5 and 150 min, respectively. The maximum gravimetric mean thermal output and input rates were 7.2 and 1.9 kW kg−1 for Li4SiO4 (59% porosity), respectively. Moreover, zeolite F-9 was examined as a pressure conditioning material by investigating the CO2 desorption profile at various CO2 pressures, and ∼15 wt% CO2 could be controlled. The zeolite showed good cycling durability and temperature responsiveness for four repeated cycles. Hence, the TcES system based on Li4SiO4 and the zeolite could be used for thermal energy storage at about 700 °C, and only temperature control was required to switch between the output and input modes. The amount of zeolite required by the proposed TcES system was 2.4 times (by weight) greater than that of Li4SiO4.
Keywords: Thermochemical energy storage; Chemical heat pump; Lithium orthosilicate; Carbon dioxide (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919303514
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:240:y:2019:i:c:p:1-5
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.02.054
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().