EconPapers    
Economics at your fingertips  
 

Gas hydrate exploitation using CO2/H2 mixture gas by semi-continuous injection-production mode

Yi-Fei Sun, Yun-Fei Wang, Jin-Rong Zhong, Wen-Zhi Li, Rui Li, Bo-Jian Cao, Jing-Yu Kan, Chang-Yu Sun and Guang-Jin Chen

Applied Energy, 2019, vol. 240, issue C, 215-225

Abstract: The CO2 replacement technique is considered as a promising approach for both gas hydrate recovery and CO2 sequestration. Based on this technique, the continuous CO2/H2 injection-production mode had been studied in our previous work. However, there are limitations on this continuous mode, such as lower CH4 recovery and CO2 sequestration ratios, lower CH4 concentration in produced gas and higher injection-production ratio caused by the fast breakthrough of injected gas. Here we proposed a so called semi-continuous injection-production mode, in which continuous injection-production process is interrupted periodically by stopping injection and production operations for letting injected gas diffuse sufficiently, delaying its breakthrough and increasing its effective sweep region. A series of experimental simulations were performed with respect to this mode in a three-dimensional simulator with a volume of 10.6 L. The results indicated that for the injected gas with low CO2 concentration, the CH4 recovery and concentration in the produced gas could be enhanced dramatically by the semi-continuous gas injection method. Additionally, the fast decomposition stage of CH4 hydrate could be retained separately in the replacement process, thereby effectively improving production efficiency. However, the corresponding CH4 concentration in the produced gas decreased and the injection production ratio increased. Notably, the process combining the CH4 steam reforming with cyclic injection-production was first simulated. The results showed an excellent CO2 storage capability and CH4 hydrate recovery ratio, which was mainly controlled by the gas composition of the re-injected gas. Through systematically comparing and analyzing the CH4 concentration, recovery ratio, production efficiency and injection-production ratio, it is demonstrated that the semi-continuous injection-production mode is superior to the continuous one. The results obtained in this work are of significance for guiding future NGHs exploitation.

Keywords: Gas hydrate; Semi-continuous injection-production mode; CH4 recovery; CO2 sequestration; Injection production ratio; CO2/H2-CH4 replacement (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919302302
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:240:y:2019:i:c:p:215-225

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.01.209

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:240:y:2019:i:c:p:215-225