EconPapers    
Economics at your fingertips  
 

A tunable frequency up-conversion wideband piezoelectric vibration energy harvester for low-frequency variable environment using a novel impact- and rope-driven hybrid mechanism

Jinhui Zhang and Lifeng Qin

Applied Energy, 2019, vol. 240, issue C, 26-34

Abstract: This paper presents a tunable frequency up-conversion wideband piezoelectric vibration energy harvester using a novel impact- and rope-driven hybrid mechanism, in which a high frequency generating beam is triggered by the rope or impacted directly by the low frequency driving beam. A mass-spring-damper equivalent model was built to understand the operation mechanism of the proposed piezoelectric vibration energy harvester. Based on the theoretical model, the effect of the rope-margin on the performance of the proposed piezoelectric vibration energy harvester was numerically analyzed. Both the simulation and experimental results showed that the central working frequency of the proposed piezoelectric vibration energy harvester can be changed easily from 74.75 Hz to 106 Hz by adjusting the rope-margin from 0.5 mm to 2 mm without any structure re-fabrication. Moreover, a bandwidth 4.2 times wider than the conventional frequency up-conversion piezoelectric vibration energy harvester based on impact-driven mechanism can be achieved. The tunable performance of the proposed piezoelectric vibration energy harvester system make it promising for vibration energy harvesting in wideband environments with low frequency.

Keywords: Impact- and rope-driven hybrid mechanism; Frequency up-conversion; Wideband energy harvester; Low-frequency variable environment (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919302892
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:240:y:2019:i:c:p:26-34

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.01.261

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:240:y:2019:i:c:p:26-34