Temporally-coordinated optimal operation of a multi-energy microgrid under diverse uncertainties
Zhengmao Li and
Yan Xu
Applied Energy, 2019, vol. 240, issue C, 719-729
Abstract:
This paper proposes a temporally-coordinated operation method for a multi-energy microgrid under diverse uncertainties from renewable energy sources, power loads and electricity transaction prices between the microgrid and the utility grid. The method aims to coordinate multiple energies in different timescales considering distinct properties of thermal and power energy: the combined cooling heat and power plants, power-to-thermal conversion units and thermal storage tanks are dispatched hourly in the day-ahead operation stage; in the intra-day online operation stage, the battery storage units are dispatched to supplement the day-ahead operation decisions every 5 min after the uncertainties are realized. Based on constraints linearization and uncertain scenario generation/reduction, the problem is converted to a deterministic two-stage mixed-integer linear programming equivalent model which can be solved efficiently. Finally, the proposed method is verified on an IEEE 33 bus distribution network based multi-energy microgrid. Compared with the existing methods, the simulation results indicate that the proposed method can better coordinate multiple energies with low operating cost and high robustness.
Keywords: Multi-energy microgrid; Temporally-coordinated operation; Distribution network; Stochastic optimization (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (32)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191930385X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:240:y:2019:i:c:p:719-729
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.02.085
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().