A novel method to enhance methane hydrate exploitation efficiency via forming impermeable overlying CO2 hydrate cap
Zhen-Feng Sun,
Nan Li,
Shuai Jia,
Jin-Long Cui,
Qing Yuan,
Chang-Yu Sun and
Guang-Jin Chen
Applied Energy, 2019, vol. 240, issue C, 842-850
Abstract:
To enhance the exploitation efficiency of natural gas hydrate by decreasing the yield of water, a novel “reservoir reformation” concept is proposed that involves the reformation of a natural gas hydrate reservoir by constructing an artificial impermeable overlying CO2 hydrate cap. The feasibility of this concept has been demonstrated in this laboratory-scale experiment. After reformation by injecting CO2 emulsion into the permeable overburden, a confined environment with an impermeable CO2 hydrate cap is successfully constructed for depressurization operation. The cap can maintain mechanical stability until the end of production process. With the protection provided by the artificial CO2 hydrate cap, the production efficiency was greatly improved to 83.3% and the water yield is remarkably decreased. Moreover, the optimal CO2/H2O volume ratio of the emulsion for forming the desired CO2 hydrate cap was confirmed to be 1:1. The formation of CO2 hydrate cap can also protect the geological stability of depleted methane hydrate zones and seal a large amount of CO2, which is of both energetic and environmental significance; however, intensive and extensive research should be conducted in the future.
Keywords: Natural gas hydrate; Reservoir reformation; Depressurization; CO2 emulsion; CO2 hydrate cap (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919303125
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:240:y:2019:i:c:p:842-850
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.02.022
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().