A modeling framework for optimization-based control of a residential building thermostat for time-of-use pricing
Paulo Cesar Tabares-Velasco,
Andrew Speake,
Maxwell Harris,
Alexandra Newman,
Tyrone Vincent and
Michael Lanahan
Applied Energy, 2019, vol. 242, issue C, 1346-1357
Abstract:
Heating, ventilation and air conditioning for residential and commercial buildings requires a substantial share of electric energy, and ultimately drives summer peak demand in the United States. Variable electric rates are becoming more common in the residential market, as utilities try to encourage users to shift their energy demand. Model predictive controls, one method of reducing energy usage, employ an optimization model to minimize peak demand, energy usage, or electricity costs. This paper details the development of a co-simulation framework to rapidly model and simulate building energy use and optimize cooling setpoint controls. The framework integrates commercially available software to: (i) simulate all energy interactions between the building, internal gains, outdoor environment, and heating and cooling systems via a building energy simulation program (EnergyPlus), (ii) algebraically formulate an optimization problem (with AMPL) using a black-box, reduced-order model for rapid calculations, (iii) employ Simulink as the environment that links calls to EnergyPlus and AMPL, and (iv) solve the optimization model (with CPLEX) to minimize electricity costs and user discomfort. Variable electric time-of-use rates are analyzed in the context of total cooling electricity costs, thermal comfort of users, and peak demand shedding. The framework uses a model predictive control formulation capable of reducing cooling electricity costs by up to 30%; however, cost savings and peak demand shedding are highly dependent on the time-of-use electricity rate schedule.
Keywords: Model predictive control simulation framework; Single-zone building; Co-simulation environment; Applied optimization; Linear programming (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919302697
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:242:y:2019:i:c:p:1346-1357
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.01.241
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().