EconPapers    
Economics at your fingertips  
 

Direct aqueous carbonation of heat activated serpentine: Discovery of undesirable side reactions reducing process efficiency

E. Benhelal, M.I. Rashid, M.S. Rayson, G.F. Brent, T. Oliver, M. Stockenhuber and E.M. Kennedy

Applied Energy, 2019, vol. 242, issue C, 1369-1382

Abstract: This work discloses a possible explanation for the relatively low efficiency and yield observed in direct aqueous carbonation of heat activated serpentine which remained a critical unanswered question during three decades of ex-situ mineral carbonation research and development. The discovery of undesirable side reactions, occurring during direct aqueous carbonation of heat activated serpentine has been reported and investigated in detail. These reactions result in the reformation of crystalline serpentine and precipitation of amorphous magnesium silicate hydroxide phase/s on the surface of reacting feed particles. Reformation of serpentine occurs under relatively mild conditions (in terms of pressure and temperature) and after only a few minutes of reaction which is in stark contrast to the conditions and rates which occur during geological serpentinisation and other laboratory studies. Scanning Electron Microscopy and Energy Dispersive X-ray spectroscopy analyses showed precipitation of amorphous magnesium silicate hydroxide phase/s during carbonation process. Fourier Transform Infrared Spectroscopy and Thermogravimetric analyses identified and quantified free and hydrogen bonded hydroxyls of silanol groups in the structure of the reaction products when heat activated lizardite and antigorite were carbonated. The growth of a crystalline serpentine phase was confirmed and quantified by X-ray Diffraction and Thermogravimetric analyses in the reaction products when heat activated antigorite was used a feed.

Keywords: CO2 sequestration; Aqueous mineral carbonation; Silica-rich passivating layer; Serpentinisation; Magnesite yield; Carbonation efficiency (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191930577X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:242:y:2019:i:c:p:1369-1382

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.03.170

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:242:y:2019:i:c:p:1369-1382