EconPapers    
Economics at your fingertips  
 

Moving second generation biofuel manufacturing forward: Investigating economic viability and environmental sustainability considering two strategies for supply chain restructuring

Rajkamal Kesharwani, Zeyi Sun, Cihan Dagli and Haoyi Xiong

Applied Energy, 2019, vol. 242, issue C, 1467-1496

Abstract: Multiple generations of biofuel manufacturing technologies have been proposed and developed, among which first generation technology is the most mature. It typically utilizes corn grain as feedstock in bio-refineries in many countries such as the United States. However, the use of edible matter of crops like corn may lead to a food-versus-fuel competition. To address such an issue, second generation biofuel manufacturing technology using the non-edible matter of crops has been developed. In this paper, the economic viability and environmental sustainability are analyzed and quantified, when restructuring the biofuel supply chain from employing first generation manufacturing technology to the one utilizing second generation technology considering the existing supply chain infrastructure. Two supply chain restructuring strategies, i.e., distributed and centralized preprocessing deployment, are modeled for implementing biomass preprocessing for second generation biofuel manufacturing. Bi-objective optimization formulations for the corn stover-sourced biofuel (a typical second generation biofuel) supply chain considering both economic and environmental aspects are proposed under both strategies. Different decision variables such as the locations selected for constructing preprocessing centers and the corresponding corn stover handling capacities of such centers, as well as the material flows between farms, preprocessing centers, and bio-refinery plants are identified. A case study based on the state of Missouri in the United States is implemented to illustrate the effectiveness of the proposed model and analyze the performance of different strategies. The results of the case study show that when corn stover is used as feedstock in bio-refineries, the unit cost of bioethanol production can be reduced, while the unit emission is increased compared to the corn-sourced supply chain under both supply chain restructuring strategies. Specifically, in Missouri where the daily stover handling amount per bio-refinery plant is relatively low and the stover collection radius is relatively small, the centralized strategy outperforms the distributed one with a higher cost reduction and a smaller increase in emissions. It reduces the unit cost by 27.39%, while increasing the unit emission by 24.42%, compared to the corn-sourced supply chain.

Keywords: Biofuel supply chain; Biomass preprocessing; Greenhouse gas emission; Cellulosic biofuel manufacturing; Corn stover (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919305033
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:242:y:2019:i:c:p:1467-1496

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.03.098

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:242:y:2019:i:c:p:1467-1496