Techno-economic analysis of screening metal hydride pairs for a 910 MWhth thermal energy storage system
Penghui Feng,
Yang Liu,
Iqra Ayub,
Zhen Wu,
Fusheng Yang and
Zaoxiao Zhang
Applied Energy, 2019, vol. 242, issue C, 148-156
Abstract:
Matching of metal hydride pairs has a significant influence on performance of thermal energy storage (TES) system. This article conducts a complete techno-economic analysis of screening metal hydride pairs (MgH2&LaNiAl and MgH2&TiFeMn). A mathematical model is developed to calculate the energy consumption, which is solved by COMSOL Multiphysics v5.1. Firstly, thermodynamic matching is analyzed to judge the energy consumption qualitatively. Further, a cost model of thermal energy is established to estimate the energy consumption cost. It is found that the charging energy consumption cost of MgH2&LaNiAl system is reduced to be zero due to a good thermodynamic matching, whereas that of MgH2&TiFeMn system accounts for as high as 63.8% of the cycle energy consumption cost. Based on the life cycle economic analysis, matching of MgH2&TiFeMn is considered to be a better selection due to a smaller levelized thermal storage cost (28 USD/kWhth), where two major expenses are the capital cost and energy consumption cost, 74.3% and 19.3% respectively. Therefore, a matching principle is concluded that screening metal hydride pairs for TES should be considered in two ways: firstly, the hydrogen storage cost due to the expensive price of low temperature metal hydride; secondly, the thermodynamic matching, which determines the energy consumption cost.
Keywords: Techno-economic analysis; Thermal energy storage; Metal hydride; Energy consumption; Life cycle economic analysis (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919304544
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:242:y:2019:i:c:p:148-156
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.03.046
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().